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A B S T R A C T   

Most of existing data-driven studies on lithium-ion battery remaining useful life (RUL) prediction consider a large 
scope of cyclic data over the entire battery life. Yet, applications of these models can be hindered due to 
restricted availability of such data in reality. This paper thus aims to study the battery RUL prediction from a new 
angle, predicting RUL via data collected from a limited number of incomplete cycles, i.e., 10 cycles, at any ageing 
stage. An advanced deep learning framework, the attention-assisted temporal convolutional memory-augmented 
network (ATCMN), is developed to realize an accurate and rapid battery RUL prediction under such challenging 
problem setting. To build an informative input based on limited data, a three-dimensional tensor input structure 
is first designed to integrate 10-cycle raw battery data including the time, capacity, and temperature dimensions 
obtained from the partial discharge process. To process such high dimensional input, the ATCMN first develops 
an attention module to automate weighting different battery parameters, time steps, and ageing cycles in the 
input. A temporal convolution module coordinating the dilated causal convolution and point-wise convolution is 
next developed to learn latent spatial-temporal feature representation from the weighted input. A memory- 
augmented module is further developed to enhance the latent feature representation through a reconstruction 
based on the historical information. Finally, the ATCMN employs a prediction module to derive nonlinear 
mappings from learned latent features to the battery RULs. A comprehensive computational study is conducted to 
verify the effectiveness of the ATCMN. Results report the higher accuracy and faster prediction of the ATCMN via 
benchmarking against a set of the state-of-the-art methods in the considered RUL predictions. Experimental 
results also show that the proposed ATCMN possesses better generalizability to different battery chemistries and 
operational conditions.   

1. Introduction 

Nowadays, lithium-ion batteries (LIBs) have been widely adopted as 
one of main means for the energy storage and power supply in many 
applications, such as portable electronics, electrical vehicles, renewable 
energy plants, etc., because of their high energy density, long cycle life, 
and low self-discharge rate [1]. Due to the recent advancement of data 
science principles, rapid LIB remaining useful life (RUL) predictions via 
data collected from a limited number of operational cycles bring a new 
horizon for accelerating the prognostics and diagnosis in the battery 
production and operation. For instance, the success of such technique 
can enable manufacturer to quickly estimate the battery RUL by 

operating just a few diagnostic cycles, thereby verifying the 
manufacturing process quality rapidly [2]. In addition, a rapid RUL 
prediction for electric vehicles and energy storage systems can help 
detect abnormal cells in advance so that unexpected failures of devices 
can be avoided [3,4]. Moreover, a rapid RUL prediction can enable a 
quick classification of retired LIBs into different secondary applications 
to improve the efficiency of the battery reutilization. Therefore, it is 
meaningful to develop advanced methods for accurate and rapid battery 
RUL predictions. 

In the literature, methods for the battery RUL prediction can be 
divided into model-based methods and data-driven methods. Model- 
based methods have been mainly studied based on three types of 
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models, the electrochemical models, equivalent circuit models, and 
empirical/semi-empirical models.  

1) Electrochemical model-based methods. They established partial 
differential equations to approximate the complex electrochemical 
process in a battery, such as considering the solid-electrolyte inter
phase growth [5] and loss of active materials [6]. Due to the high 
computational complexity, these methods cannot appropriately 
serve online applications.  

2) Equivalent circuit model-based methods. They utilized circuit 
components with empirical nonlinear parameters to describe battery 
degradation modes, such as the RC equivalent circuit models [7] and 
fractional-order equivalent circuit models [8]. However, several 
model parameters, such as the ohmic resistance, are difficult to 
measure, which makes them unsuitable for online applications.  

3) Empirical/semi-empirical model-based methods. They first built 
mathematical models to characterize battery ageing patterns, such as 
the empirical exponential model [9], empirical ensemble model 
[10], semi-empirical Coulombic efficiency model [11], etc. Next, 
filtering techniques, such as the particle filter [12] and Kalman filter 
[13], were utilized to update model parameters for online RUL pre
dictions. Although these methods can be operated online, the pre
diction accuracy relies heavily on the underlying battery degradation 
model. 

In contrast, data-driven methods are mechanism-free and nonpara
metric, which possess a higher flexibility than model-based methods in 
modeling. Data-driven RUL prediction studies can be grouped into three 
main types in terms of the inference principle, the capacity degradation 
curve-based methods, handcrafted feature-based methods, and end-to- 
end deep learning methods.  

1) Capacity degradation curve-based methods. Given the capacity 
data of first hundreds of cycles, these studies utilized autoregressive 
models to predict the future capacity degradation pattern of LIBs and 
obtain the RUL by extrapolating the predicted capacity to the end of 
life (EoL). Different data-driven models have been applied to predict 
the future capacity fading patterns. Reported ones include the rele
vance vector machine (RVM) [14], Gaussian process regression 
(GPR) [15], deep neural network based models, such as the recurrent 
neural network (RNN) and its famous variant - long short-term 
memory (LSTM) [16,17], as well as the hybrid network integrating 
the convolutional neural network (CNN) and LSTM [18].  

2) Handcrafted feature-based methods. Based on various battery 
health features, these studies employed classical machine learning 
and recent deep learning techniques to build data-driven models for 
direct battery RUL predictions or estimating the battery state-of- 
health (SOH) to extrapolate the RUL. Many existing studies empiri
cally developed features highly correlated to the battery SOH or RUL 
based on raw battery attributes. Presented handcrafted features can 
be briefly categorized into three groups: a) features from original 
voltage/current/temperature curves, e.g., the mean voltage falloff 
within a specific discharge time interval [19] and average surface 
temperature [20]; b) features from processed voltage curves, mainly the 
incremental capacity (IC) and differential voltage (DV) curves. For 
example, the position, height, and area of the IC peak [3] as well as 
the interval between two inflection points in the DV curve [21]; c) 
features based on statistical metrics, e.g., the variance of the difference 
between discharge capacity-voltage curves [2–4] and the sample 
entropy of a short voltage sequence [22]. Based on handcrafted 
features, data-driven models, such as the elastic net [2], support 
vector machine (SVM) [23], GPR [4], autoencoder [20], and CNN 
combined with LSTM [24], were next employed to develop mappings 
from these features to the target SOH or RUL.  

3) End-to-end deep learning methods. Recently, a growing volume of 
studies presented attempts of applying deep network based models of 

various architectures to automatically learn latent features from raw 
battery data and then predict the battery RUL, which offered an end- 
to-end prediction process. The CNN [25], RNN [26], and their vari
ants [27,28] were most frequently discussed in deep learning-based 
battery RUL prediction studies. Hong et al. [25] studied a dilated 
CNN to automatically extract features from the terminal voltage, 
current, and temperature data during the full charge-discharge pro
cess, and mapped them to the RUL. Han et al. [26] employed a LSTM 
with a domain adaption layer to learn features from the raw voltage, 
current, and temperature data during the full charge process, and 
next mapped them to the battery capacity. Based on the raw charge- 
discharge capacity, voltage, current, and temperature data, as well as 
a set of human-made features, Hsu et al. [27] developed a deep CNN 
architecture to learn the mapping from deeply learned features to the 
battery RUL. 

Data-driven studies have reported promising results in the battery 
RUL prediction; Yet, there are still several limitations for existing 
methods. First, in most existing studies, more than 25% data of the 
entire battery life were generally required for the parameter estimating 
and model training so that accurate RUL predictions could be achieved 
[29]. Such high data access requirement forms an obstacle for applying 
these methods to realize rapid RUL predictions via limited online data. 
Although a few state-of-the-art studies [2,3] presented attempts of 
realizing accurate battery lifetime predictions via only the first-100- 
cycle data, they were limited to the early-stage degradation data and 
were not verified with data of any ageing stage in the entire battery life. 
In practical applications, it is common that LIBs in electrical devices may 
have gone through a number of ageing cycles, and an intelligent BMS is 
supposed to start the battery diagnosis at any cycles and to offer an 
accurate RUL prediction using data of lowest possible number of cycles. 
Thus, it is meaningful to further develop data-driven frameworks 
enabling an accurate and rapid online RUL prediction via battery data 
collected from a limited number of cycles at any ageing stage of the 
entire battery life. However, such challenging development has not 
received sufficient discussions in the literature because the information 
contained in a few operational cycles is quite limited for training data- 
driven models of sufficient quality. Innovation is thus desired at the 
battery data usage paradigm and advanced data-driven model devel
opment. One possible direction is to first design a more effective input 
structure properly integrating the information of multiple dimensions 
contained in data of limited cycles obtained at any battery ageing stage 
and next advance the deep model architecture for effectively processing 
such high dimensional input to extract data patterns depicting the bat
tery degradation in latent space. Another unclear aspect of previous 
studies is the generalizability of reported performance as many verifi
cations were conducted based on data of only one type of LIBs operated 
under a specific condition. Studying the robustness of methods towards 
different battery chemistries and operation conditions is so far insuffi
cient in the literature. Moreover, most existing studies were conducted 
with assuming that data of the full charge and discharge process were 
accessible, which could be too ideal to real applications. Therefore, it is 
meaningful to further investigate methods working well when only the 
partial charge/discharge data are available. 

To fill aforementioned research gaps, this paper presents a pioneer
ing attempt of developing a more advanced deep learning model, the 
attention-assisted temporal convolutional memory-augmented network 
(ATCMN). The developed ATCMN aims to enable rapid battery RUL 
predictions based on battery data of only 10 incomplete cycles obtained 
at any battery ageing stage. In ATCMN, a tensor-like input structure is 
first developed to realize an organic fusion of the battery partial 
discharge process data from the time, capacity, and temperature infor
mation dimensions. Next, to extract the high-level latent and represen
tative features as well as derive the mapping of inferring the RUL, the 
tensor-like input sequentially goes through four modules, the attention 
module, temporal convolution module, memory-augmented module, 
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and prediction module. The attention module consisting of the 
parameter-wise attention and cycle-wise attention aims to automate the 
weighting of different battery parameters as well as time steps and 
ageing cycles in the input so that input elements more important to the 
battery RUL prediction can be emphasized. The temporal convolution 
module then hierarchically extracts high-level spatial-temporal features 
from the input via coordinating the dilated causal convolution and 
point-wise convolution operations. A memory-augmented module is 
developed to further enhance the latent feature representation with a 
reconstruction based on historical information. Finally, the prediction 
module serves learning the nonlinear mapping from learned latent fea
tures to the battery RUL. Computational experiments are conducted on 
three datasets containing LIBs of different materials while tested under 
various conditions to verify the effectiveness and robustness of the 
proposed ATCMN. To further verify the superiority of the proposed 
ATCMN, a set of state-of-the-art benchmarks are considered and 
compared. 

Major contributions of this research are summarized as follows:  

1) From the application perspective, a deep learning powered framework 
is developed to realize the rapid battery RUL prediction with only 
data of 10 incomplete cycles obtained at any battery ageing stage, 
which is pioneering in the literature. This framework offers a great 
potential for facilitating the battery design optimization, online 
diagnosis, and recycling.  

2) From the technical perspective, an innovative deep learning model 
ATCMN composed of four coordinated network modules, the atten
tion module, temporal convolution module, memory-augmented 
module, and prediction module, for better feature engineering and 
more advanced modeling is proposed for the first time in the litera
ture to tackle the rapid battery RUL prediction task with limited and 
incomplete cyclic data.  

3) From the performance improvement aspect, the proposed framework 
offers the better generalization ability to different LIB materials and 
operation conditions. It also provides higher accuracy and faster 
prediction by comparing with existing state-of-the-art benchmarks. 

2. Experimental Data 

In this paper, three LIB datasets considering different chemical ma
terials and test conditions are investigated to verify the performance of 
the proposed method. Two of them are publicly accessible while one is 
collected via experiments conducted in our laboratory. Detailed speci
fications of selected cell samples from three datasets are summarized in 
Table 1. Fig. 1 plots the capacity degradation curves of cell samples in 
each group. The battery lifetime corresponds to the cycle number with 

20 % nominal capacity loss.  

1) Dataset I: LFP battery 

Dataset I is a public dataset provided by the Massachusetts Institute 
of Technology and Stanford University [2]. The dataset was collected 
from commercial lithium-iron phosphate (LFP)/graphite cells at an 
environmental temperature of 30 ◦C. The nominal capacity of cells is 1.1 
Ah, and the upper and lower cutoff voltages are 3.6 V and 2.0 V, 
respectively. During cycling, the cells were charged with various fast- 
charging policies, denoted as “C1(S1%)-C2”. That means, the cells 
were first charged with a constant current C1 until the SOC reached S1% 
and next charged with a constant current C2 until the SOC reached 80 %. 
Subsequently, the cells went through a 1C constant-current constant- 
voltage (CCCV) charging stage until reaching the upper cutoff voltage. 
During the discharge process, all cells were identically discharged with a 
constant current 4C until reaching the lower cutoff voltage. Signals of 
the terminal voltage, current, temperature, and capacity were continu
ously collected and real-time computed. 

In Dataset I, the cell samples have a wide lifetime range varying from 
300 cycles to 2300 cycles. Among them, six short-lived samples and six 
long-lived samples are chosen to evaluate and verify our proposed 
method. These selected samples are sorted as Group A/Group B and 
numbered as A1–A6/B1–B6, as listed in Table 1.  

2) Dataset II: LCO battery 

Dataset II is the widely utilized CS2 dataset provided by the Center 
for Advanced Life Cycle Engineering (CALCE) at the University of 
Maryland [30]. The dataset was collected from prismatic lithium cobalt 
oxide (LCO)/graphite cells at the room temperature 25 ◦C. The nominal 
capacity of cells is 1.1 Ah, and the upper and lower cutoff voltages are 
4.2 V and 2.7 V, respectively. Three cell samples, CS2_35, CS2_36, and 
CS2_37, are selected, which are sorted as Group C and numbered as 
C1–C3, as listed in Table 1. In the charging process, these samples were 
charged with a 0.5C CCCV protocol. In the discharge process, they were 
discharged with a constant current 1C until reaching the lower cutoff 
voltage. Signals of the voltage, current and capacity were continuously 
collected and calculated.  

3) Dataset III: NMC battery 

Dataset III is collected from our own experiment platform as shown 
in Fig. 2. Cycling tests were conducted on three cylindrical Li(NiMnCo) 
O2 (NMC)/carbon cells at an ambient temperature of 25◦C, using Arbin 
BT2000 tester. The nominal capacity of cells is 1.35 Ah, and the upper 

Table 1 
Specifications of different groups of battery samples.   

Cell no. Lifetime Charge policy Discharge rate Nominal capacity Upper/lower cutoff voltage 

Dataset I: LFP battery Group A A1  495 ‘4.8C(80%)-4.8C’ 4C 1.1 Ah 3.6/2 V 
A2  461 ‘4.8C(80 %)-4.8C’ 
A3  468 ‘4.9C(27 %)-4.75C’ 
A4  509 ‘4.9C(61 %)-4.5C’ 
A5  471 ‘4.8C(80 %)-4.8C’ 
A6  498 ‘4.9C(69 %)-4.25C’ 

Group B B1  1009 ‘5C(67 %)-4C’ 
B2  1063 ‘5.3C(54 %)-4C’ 
B3  1048 ‘5.6C(19 %)-4.6C’ 
B4  1039 ‘5.3C(54 %)-4C’ 
B5  1078 ‘4.8C(80 %)-4.8C’ 
B6  1028 ‘5.6C(19 %)-4.6C’ 

Dataset II: LCO battery Group C C1  596 0.5C 1C 1.1 Ah 4.2/2.7 V 
C2  538 
C3  609 

Dataset III: NMC battery Group D D1  761 1C 1C 1.35 Ah 4.0/2.5 V 
D2  874 
D3  733  
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Fig. 1. Capacity degradation curves of cell samples: (a) Group A; (b) Group B; (c) Group C; (d) Group D.  

Fig. 2. Battery experimental platform.  
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and lower cutoff voltages are 4.0 V and 2.5 V, respectively. In each test 
cycle, the cells first underwent a 1C CCCV charge process and then a 1C 
constant current discharge process. Signals of the voltage, current and 
capacity were continuously collected and calculated. These samples are 
sorted as Group D and numbered as D1-D3, as listed in Table 1. 

3. Problem Formulation and Methodology 

3.1. Tensor data structure construction 

In the online battery management system (BMS), real-time battery 
signals, such as the charging and discharging time (t), voltage (V), cur
rent (I), temperature (T), and capacity (Q) are continuously collected 
and computed. In this section, we analyze the temporal pattern of these 
signals and develop a novel data structure to effectively fuse the physical 
and temporal information in these signals. We will focus on the 
discharge process to allow tolerating the impact of largely varied 
charging conditions on the battery RUL in studied datasets. 

Among these raw battery signals, V varies within a fixed range [Vl, 
Vu], where Vl and Vu denote the lower and upper cutoff voltage. 
Considering V as the anchor, Fig. 3 plots curves of t, Q and T over V in 
different cycles, which are collected from a cell sample in Dataset I. As 
shown in Fig. 3, the spatial shape and location of t, Q, and T curves are 
varying as the battery ages. Specifically, curves of signals t and Q tend to 
move towards lower left, which is physically caused by the capacity loss 
due to the usage of LIBs. While the curve of T tends to move to upper 
right. This rising trend of T is mainly resulted from the increase of 

internal resistance as LIBs degrade. These variations of t, Q, and T can 
effectively reflect the battery degradation and RUL decline pattern. 
Therefore, to fully utilize such information, a three-dimensional tensor- 
like data structure Xi is developed as shown in Fig. 4. For the i-th cycle, 
Xi is expressed as (1). 

Xi =

⎡

⎢
⎢
⎣

T(V)i− W+1,…,T(V)i− 1,T(V)i

Q(V)i− W+1,…,Q(V)i− 1,Q(V)i

t(V)i− W+1,…, t(V)i− 1, t(V)i

⎤

⎥
⎥
⎦ ∈ RH×W×D,

T(V)i =
(
Ti,1, Ti,2,…,Ti,D

)
∈ RD,

Q(V)i =
(
Qi,1,Qi,2,…,Qi,D

)
∈ RD,

t(V)i =
(
ti,1, ti,2,…, ti,D

)
∈ RD

(1)  

where H, W, D denote the height, width, and depth of the tensor. The 
data structure Xi integrates the physical, cycle-wise, and temporal in
formation of the raw battery data into the height, width, and depth di
mensions, respectively. Given that the incomplete discharging is quite 
common in real applications, in this study, a partial voltage range of [Vl

p, 
Vu

p] is considered for each type of studied LIBs, which is determined 
through a series of comparative experiments. The partial voltage range 
[Vl

p, Vu
p] is [2.5 V, 3.2 V], [3.1 V, 3.8 V], and [2.9 V, 3.6 V] for LFP, LCO, 

and NMC batteries, respectively. It should be noted that the relative t 
and Q are considered, which means that the discharge t and Q increase 
from zero at the upper voltage limit, tup = Qu

p = 0. 
As shown in Fig. 4(a), the two-dimensional tabular forms of t, Q, and 

T signals are stacked, which result in a height dimension H = 3. The 

Fig. 3. Curves of (a) discharge time; (b) capacity; (c) temperature over discharge voltage at different ageing cycles, a cell sample in Dataset I.  
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width W of the tensor represents the size of the time window, which is 
set as 10 cycles after a number of preliminary trials. That means, for the 
i-th cycle, Xi = (xi− 9,xi− 8,…,xi− 1,xi), xi = (ti,Qi,Ti) ∈ R3×D. The depth D 
of the tensor corresponds to the number of sampled values with an equal 
voltage interval in each cycle. Here, the value of D is set as 100. Fig. 4(b) 
shows the detail of the t map in the tensor. For example, ti− W+1, 50 de
notes the 50-th sampled t value at cycle i − W + 1. 

3.2. Problem formulation and framework development 

Given a training dataset Data = {(ti,Qi,Ti,yi)}i=1
M , the goal of this 

paper is to learn the nonlinear mapping f(⋅) from raw battery signals 
(ti,Qi,Ti) to the RUL yi, where M is the number of training samples. In 
Section 3.1, to fully fuse the local spatial and temporal information in (t, 
Q,T), we reorganize them into a tensor data structure Xi. Therefore, the 
task is transformed into learning the nonlinear mapping F(⋅) from Xi to 
the RUL yi as described in (2). Fig. 5 demonstrates the graphical 
expression of our problem formulation. 

yi = F(Xi) = F

⎛

⎝
Ti− W+1,…,Ti− 1,Ti
Qi− W+1,…,Qi− 1,Qi

ti− W+1,…, ti− 1, ti

⎞

⎠,W = 10 (2) 

To effectively process the spatial and temporal information in Xi, we 
develop a deep ATCMN framework to learn the mapping F(⋅). The 
flowchart of the proposed battery RUL prediction framework is illus
trated in Fig. 6. 

3.3. ATCMN-based battery RUL prediction model development 

Fig. 7 demonstrates the overall architecture of the proposed ATCMN, 
which is composed of four network-based modules, the attention mod
ule, temporal convolution module, memory-augmented module, and 
prediction module. The attention module is developed to weight the 
importance of different time steps, battery parameters, and different 
cycles in the input tensor to the RUL prediction. The temporal convo
lution module is developed to capture the spatial and temporal patterns 
from the attention weighted input as well as to extract high-level latent 
and representative features. The memory-augmented module is devel
oped to further enhance the latent spatial-temporal features via a 
reconstruction based on their historical information. Finally, the pre
diction module is employed to derive the mapping from deeply extracted 
features to the target battery RUL. Details of each module are sequen
tially elaborated next. 

3.3.1. Attention module 
Different battery parameters together with their values at different 

time steps and ageing cycles in the developed tensor-like input could 
contribute differently to the battery RUL prediction. To allow the 
ATCMN model to focus more on important elements in the input, a two- 
channel attention mechanism customized from the generic one dis
cussed in [31] is employed to automatically assign weights on different 
elements in the tensor-like input. The two-channel attention mechanism 
conducts the parameter-wise and cycle-wise attention on the input 
sequentially. 

The parameter-wise attention channel is designed to increase the 

(a) (b)

Fig. 4. (a) The input tensor structure; (b) Detail of the t map in the tensor.  

Fig. 5. Graphical expressions of the proposed problem formulation.  
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model attention on more important battery parameters. Fig. 8(a) illus
trates the structure of the parameter-wise attention. As shown in Fig. 8 
(a), this process first performs both max pooling and average pooling 
operations to compress the input tensor over the width and depth di
mensions (cycle dimension and time step dimension) and generates two 
one-dimensional vectors M ∈ RH and A ∈ RH as parameter-wise de
scriptors. The M and A are next fed into a shared multi-layer perceptron 
(MLP) with two fully connected layers. Outputs of the MLP are merged 
together and go through a sigmoid activation operation to generate the 
parameter attention map PA ∈ R1×1×H. The computation of PA is 
expressed in (3). 

PA(X) = σ(MLP(MaxPooling(X) ) + MLP(AvgPooling(X) )

= σ((W2(W1(M) + B1 ) + B2) + (W2(W1(A) + B1 ) + B2 ))
(3)  

where σ denotes the sigmoid operation, please refer to (4). The (W1,W2, 
B1,B2) are trainable parameters of the MLP. The number of hidden nodes 
is {20, 3} in the MLP. 

σ(x) = 1
1 + e− x =

ex

1 + ex (4) 

Finally, an element-wise multiplication is conducted between the 
input tensor X and the parameter attention map PA to generate the 
refined feature map X′ with weighted battery parameters as depicted in 
(5). 

X′

= PA ⊗ X (5) 

After the parameter-wise attention, the cycle-wise attention channel 
processes the refined feature map X′ and assigns importance weights to 
different time steps in different cycles. Fig. 8(b) shows the structure of 
the cycle-wise attention. As shown in Fig. 8(b), this process conducts 
max pooling and average pooling along the height dimension (battery 
parameter dimension) and generates two two-dimensional feature maps 
Fmax ∈ RD×W and Favg ∈ RD×W, which are then concatenated to form a 
cycle/time information descriptor F ∈ RD×W×2. The F next goes through 
a convolution and a sigmoid operation, and finally outputs the cycle 
attention map CA ∈ RD×W×1. The CA suggests which cycles and time 
steps are more beneficial to the battery RUL prediction. The calculation 
of CA is depicted in (6). 

CA(X′

) = σ(Conv[MaxPooling(X′

) ;AvgPooling(X′

) ] )

= σ
(
Conv

[
Fmax;Favg

] ) (6) 

Fig. 6. The flowchart of the proposed framework for rapid online RUL predictions of LIBs.  

Fig. 7. Overall architecture of the proposed ATCMN.  

Fig. 8. (a) Parameter-wise attention; (b) cycle-wise attention.  
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where Conv(⋅) denotes a convolution operation with a filter size of 5 × 5. 
The cycle attention map CA is finally multiplied with the parameter- 
refined map X′ to further emphasize contributions of more important 
cycles and time steps. The generated feature map X′ ′ as depicted in (7) is 
the input of the next module for further latent feature learning. 

X′ ′ = CA ⊗ X′ (7)  

3.3.2. Temporal convolution module 
In ATCMN, a TCN module is next developed to further extract latent 

features based on the attention-weighted tensor X′ ′. Through intro
ducing causal and dilated convolution structures into the standard CNN, 
the TCN can better capture both the local spatial and temporal patterns 
from tensor inputs [32]. Fig. 9 illustrates the process of dilated causal 
convolution. In causal convolution, the output at time t is obtained by 
convolving entries of time t and earlier in the previous layer, which can 
be denoted as Cau(⋅) in (8): 

yi = Cau
(
X′ ′

i

)
= Cau

(
x′ ′

i− W+1, x
′ ′
i− W+2…x′ ′

i− 1, x′ ′
i

)
(8) 

Different from traditional convolutions, it does not consider the in
formation of the future time. This is also consistent with the practical 
situation of our online RUL prediction task. 

In dilated convolution, a fixed interval is introduced between every 
two adjacent entries, which can effectively expand the receptive field. As 
illustrated in Fig. 9, a dilation factor d = 2 means that the input entries 
with an interval of 2 are convolved together to generate the output of the 
next layer. The dilated causal convolution Dil(⋅) can be denoted as (9): 

Dil
(
X′ ′

i ;w, b
)
=

∑K

k=1
fk⋅x′ ′

i− (k− 1)⋅d (9)  

where f is a convolutional kernel with length K, fk is the k-th element in 
the kernel, (w,b) are weights and bias of the kernel that need to be 
learned. Here, d is growing exponentially with the number of layers, 
enabling a larger receptive field of the TCN. 

After the dilated causal convolution, a batch normalization BN(⋅) as 
depicted in (10) is applied to standardize the convolution outputs. 

BN(h; γ, β) = γ
h − Ê(h)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

V̂ar(h) + ϵ
√ + β (10)  

where h = Dil(Xi
′ ′) is the convolutional output, Ê(h) and V̂ar(h) are the 

mean and variance of h, ϵ is a regularization parameter, while γ and β are 
two parameters that need to be learned. A ReLU activation function R(p) 
= max (0,p) is next applied to tackle the gradient vanishing, where p is 
the normalized result. 

The TCN module in the proposed ATCMN contains four temporal 
convolutional (TC) layers. Based on a large number of computational 
trials, we utilize {8, 16, 32, 64} convolution kernels with the kernel size 

K = 2 in each TC layer. The dilation factors d = {1,2,4,8} are consid
ered. To maintain the full temporal information as the network goes 
deeper, we conduct zero padding in each TC layer to keep subsequent 
layers the same length W as the input layer. 

Finally, inspired by the depth-wise separable convolution in the 
Xception network [33], we add a point-wise convolution operation at 
the end of the TCN module to further aggregate the learned high-level 
latent features over multiple channels. The point-wise convolution is 
expressed in (11). 

U = fp ⊙ P (11)  

where P is the feature map learned by TC layers. U denotes the output of 
the point-wise convolution, which is a one-channel aggregated feature 
map. fp denotes a 1 × 1 × C filter, and C is the number of channels in P. 

3.3.3. Memory-augmented module 
To better incorporate the historical degradation information into the 

RUL prediction, a memory-augmented module is next adopted to further 
process and reconstruct the latent feature representation U learned by 
the TCN module. A typical memory network [34] consists of four com
ponents, In, Gen, Out, and Res. The In denotes the input feature U learned 
from the previous module. The Gen denotes a generalization process for 
the memory unit updates during the model training. The Out denotes the 
output feature reconstructed by the memory network. The Res denotes 
the final prediction module that maps the output feature to the target 
RUL. 

Fig. 10 illustrates the structure of the memory-augmented module 
utilized in the proposed ATCMN. Using the input feature U as a query, 
this module first compares it with a set of historical memory units to 
attain the most relevant units through the memory addressing operator 
and finally outputs the reconstructed feature representation Z. The 
feature reconstruction process is depicted in (12). 

Z =
∑N

i=1
wimi

wi =
exp(d(U,mi) )

∑N

j=1
exp

(
d
(
U,mj

) )

dis(U,mi) =
Umi

T

‖U‖‖mi‖

(12)  

where mi is the i-th memory unit. N is a hyperparameter determining the 
number of memory units, which is set to 2000 in this study. dis(⋅, ⋅) de
notes a cosine similarity measurement. 

3.3.4. Prediction module 
A prediction module is finally employed to learn the nonlinear 

mapping between the feature representation Z learned from previous 
modules and the battery RUL y. This module contains two fully con
nected (FC) layers. The mapping process can be mathematically 

Fig. 9. Illustration of dilated causal convolutions.  Fig. 10. Structure of the memory-augmented module.  
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expressed as (13). 

ŷ = g(Z;W,B) = Dr(W ×Z+B) (13)  

where ŷ is the predicted RUL, (W,B) are parameters of two FC layers 
that need to be learned, and Dr(⋅) is a drop out operation preventing the 
model from overfitting. In two FC layers, we utilize {50, 50} nodes and 
set the drop out probability to 0.2. 

The whole ATCMN is trained via the loss function defined in (14). 

Loss(X, y; θ) =
1
M

∑M

m=1
(Fθ(X) − y )2

− αwlog(w) (14)  

where M is the number of training samples, F denotes the mapping of the 
developed ATCMN, θ denotes the network parameters to be learned, and 
w is the weight of memory units. α is a hyperparameter, which is set to 
0.0001 in this study. 

Pseudo codes of the offline model development and online model 
implementation are offered in Algorithms 1 and 2, respectively. 

4. Results and Discussion 

In this section, computational experiments are conducted to evaluate 
the proposed method. In Sections 4.1 and 4.2, the performance of 
different battery parameters and different time window sizes are 
analyzed, respectively. In Section 4.3, the robustness of our framework 
is verified. In Section 4.4, the superiority of our method is validated by 
comparing with a set of benchmarks. In Section 4.5, an ablation study is 
conducted to explore the effect of handcrafted features and deeply 
learned features. Computational experiments are conducted on a server 
with three NVIDIA GeForce RTX 2080 GPUs, and a 64-bit ubuntu 
operating system. In Group A–D, the cyclic data of cell A1–A4, B1–B4, 
C1–C2, and D1–D2 are used as training samples in each group, while 
those of cell A5-A6, B5-B6, C3 and D3 are utilized as testing samples in 
each group. The MAE (mean absolute error) and MAPE (mean absolute 
percentage error) described in (15) and (16) are employed to evaluate 
the method performance: 

MAE =
1
M

∑M

i=1
|yi − ŷi| (15)  

MAPE =
1
M

∑M

i=1

|yi − ŷi|

yi
× 100% (16)  

where M denotes the number of training cycles, yi and ŷi denote the 
actual and predicted RUL, respectively. The MAE measures the absolute 
error between the true and predicted RUL, while the MAPE describes the 
relative error rate. 

4.1. Effect of input battery parameters 

To evaluate the value of considering various battery parameters on 
the RUL prediction, multiple combinations of raw battery parameters (t, 
Q and T) are considered as inputs. Experiments are first conducted on 
Group A and B of Dataset I since Datasets II and III do not provide re
cords of the T parameter. For a fair comparison, the time window size is 
fixed as 10 cycles. Results are demonstrated in Table 2 and Fig. 11. 

As shown in Table 2, for all testing cells, the best prediction perfor
mance (marked as bold) is achieved when the t, Q and T parameters are 
all considered. Besides, compared with considering only t in the input, 
better performance is achieved when an additional parameter is com
bined. Adding the Q parameter could bring more accuracy improvement 
than adding the T parameter, which implies that the Q parameter has a 
higher benefit on the RUL prediction than the T parameter. In addition, 
it is observable that, when Q and T parameters are considered in inputs, 
results of all tested cells are worse than those of considering only t in the 
input. This indicates the superiority of the t parameter than other two on 
the RUL prediction. In Fig. 11, it is observable that the proposed method 
can well capture the actual battery RUL attenuation trajectories based 
on information of only 10 partial cycles. 

4.2. Effect of time window size 

Different lengths of time window contain different amount of battery 
temporal information and will affect the prediction performance. To 

Algorithm 1 
Offline model development.  

1: Input: Battery parameters (t, Q, T) and RUL y in historical datasets, time window size W, number of iterations N  
2: Construct the tensor input: 

Xi = TensorInput

⎛

⎝
Ti− W+1,…,Ti− 1,Ti
Qi− W+1,…,Qi− 1,Qi

ti− W+1,…, ti− 1, ti

⎞

⎠

3: Initialize the network parameters θ  
4: for epoch j = 1 to N 

θ = arg min Loss(X, y; θ)

Update parameters θ using back propogation and gradient-based optimizer 

end for  

5: Output: The fine-trained model Fθ  
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evaluate the effect of the time window size on RUL prediction, 
comparative experiments are conducted using window sizes of {1, 5, 10, 
15, 20, 30} cycles. Three parameters t, Q and T are all employed as in
puts. Results on are summarized in Table 3. 

As shown in Table 3, error metrics of the lowest values are marked as 
bold. For all test cells, the best RUL prediction is achieved when the time 
window size is set to 10 or 15 cycles. In general, a window size of 10 
cycles is a good trade-off that simultaneously guarantee the accuracy 
and efficiency of the rapid RUL prediction. Smaller time window sizes, 
such as 1 or 5 cycles, or much larger time window sizes, such as 30cy
cles, present worse performance for RUL predictions. The reason may be 
of two folds. A too small time-window size cannot provide sufficient 
historical information for an accurate RUL prediction. While, with a too 
large time-window, the current ATCMN framework cannot effectively 
capture the full temporal information from such long sequence data. 
Therefore, the optimal time window size is determined as 10 cycles in 
this study. 

4.3. Verification of the method robustness 

To verify the robustness of the proposed method, experiments are 
further carried out on datasets of Group C and D, which have different 
battery materials and test conditions with Group A and B. In these two 
battery groups, the T parameter is not recorded; therefore, only t and Q 
parameters are employed as inputs. In each group, cell C1–C2, D1–D2 
are used as offline training samples, while cell C3 and D3 are utilized as 
online testing samples. Results are demonstrated in Table 4 and Fig. 12. 

As shown in Table 4, the proposed framework presents a strong 
generalizability to various LIB materials and operation conditions. For 
cell C3, the MAE and MAPE are 23 cycles and 17.1 %, respectively. 
While these metrics for cell D3 are 13 cycles and 6.8 %, respectively. As 

presented in Fig. 12, the proposed method can basically capture the 
actual RUL decay trend for cells C3 and D3. There is still room for 
improving the prediction accuracy if more LCO and NMC cell samples 
are available for the model training. 

4.4. Comparison with benchmarks 

To verify the effectiveness of the proposed ATCMN method, we 
benchmark it against three state-of-the-art deep learning frameworks 
reported in recent studies. In [24], a parallel CNN and LSTM deep neural 
network was developed to process a set of handcrafted features and 
predict the battery RUL. In [27], a deep CNN-based framework was 
proposed to learn battery degradation patterns from the raw battery 
charge-discharge data and a set of handcrafted features as well as predict 
the battery RUL. The ‘Full RUL DNN’ in [27] is considered as a bench
mark in our experiments, because it serves for the same prediction task 
as our study, which is to predict the battery RUL with data obtained at 
any ageing stage. In [28], a hybrid parallel residual CNN (HPR CNN) 
framework was proposed to process the raw voltage, current, and tem
perature data, as well as output the battery RUL. For a fair comparison, 
we design inputs (including handcrafted features/raw battery parame
ters) for these deep learning frameworks based on 10-cycle battery data 
collected from the partial charge/discharge process. We also train the 
deep learning model with only 10-cycle data, although some bench
marking model is trained with a larger scope of data. One representative 
testing cell is picked out from each battery group, and comparison re
sults are summarized in Table 5. 

As shown in Table 5, the proposed ATCMN framework demonstrates 
a higher accuracy than the considered benchmarking deep learning 
models. Prediction errors of the ATCMN framework are the lowest for all 
testing groups, especially in Group C and D, which contains different 

Algorithm 2 
Online model implementation.  

1: Input: Online battery parameters (t*,Q*,T*)  
2: Construct the tensor input: 

X*
i = TensorInput

⎛

⎜
⎜
⎝

T*
i− W+1,…,T*

i− 1,T
*
i

Q*
i− W+1,…,Q*

i− 1,Q
*
i

t*i− W+1,…, t*i− 1, t
*
i

⎞

⎟
⎟
⎠

3: Predict the battery RUL: 

y*
i = Fθ

(
X*

i

)

4: Output: The predicted RUL yi
*  

Table 2 
RUL prediction results of different input parameter combinations.  

Parameter combination Group A Group B 

Cell A5 Cell A6 Cell B5 Cell B6 

t Q T MAE MAPE MAE MAPE MAE MAPE MAE MAPE 

√    23 11.2 %  17 15.1 %  37 16.7 %  13 10.3 % 
√  √  18 10.5 %  14 13.9 %  34 12.9 %  22 15.4 % 
√ √   10 8.1 %  12 11.9 %  28 12.7 %  12 8.1 %  

√ √  27 14.6 %  21 17.5 %  39 21.3 %  31 21.7 % 
√ √ √  4 7.4 %  8 7.5 %  21 10.8 %  11 7.7 %  
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Fig. 11. RUL prediction results of testing cells in Group A and B using the three-parameter input.  

Z. Fei et al.                                                                                                                                                                                                                                       



Journal of Energy Storage 62 (2023) 106903

12

types of LIBs. This also indicates the better generalization ability of the 
proposed ATCMN method. 

Results of previous comparative studies have demonstrated the su
periority of the ATCMN in predicting battery RUL using data obtained at 
any ageing stage. Meanwhile, it is worth noting that some latest studies 
could realize accurate early-stage battery lifetime predictions via data 
obtained within the first 100 cycles. To further examine the performance 
of the ATCMN from the perspective of early-stage battery lifetime pre
diction, we compare it with three state-of-the-art methods reported in 
recent studies. The first benchmark has a single handcrafted feature and 
corresponds to the “variance” model presented in [2]. The feature was 

extracted based on the first-100-cycle degradation data and was input 
into an elastic net (EN) model to make early battery lifetime predictions. 
The second benchmark adopts 18 handcrafted features, corresponding 
to the “full” model presented in [2]. The whole set of features was 
extracted using the first-100-cycle degradation data and was fed into an 
EN model to predict the battery lifetime. The third benchmark has four 
handcrafted features obtained based on the first-80-cycle degradation 
data [35]. The features were input into a general regression neural 
network (GRNN) to early predict the battery lifetime. These three 
benchmarking methods were all proposed based on Dataset I; therefore, 
comparative experiments are conducted on Group A and B from Dataset 
I. Two metrics, the absolute error (AE) and absolute percentage error 
(APE) between the true and predicted battery lifetime, are adopted to 
evaluate the method performance. Results are reported in Table 6. 

As shown in Table 6, in the early-stage battery lifetime prediction 
task, the proposed framework outperforms considered benchmarks with 
a higher accuracy and much earlier prediction point. By using just the 
first-10-cycle information, our method achieves APEs of 0.6 %, 4.2 %, 
0.6 % and 1.5 % on testing cells A5, A6, B5 and B6, respectively. These 
metrics are lower than all three benchmarks, which utilize first-80-cycle 

Table 3 
RUL prediction results of different time window sizes.  

Time window size Group A Group B 

Cell A5 Cell A6 Cell B5 Cell B6 

MAE MAPE MAE MAPE MAE MAPE MAE MAPE  

1  14 12.7 %  19 14.6 %  38 19.3 %  22 18.5 %  
5  11 11.8 %  11 8.3 %  30 15.2 %  21 17.8 %  
10  4 7.4 %  8 7.5 %  21 10.8 %  11 7.7 %  
15  4 7.1 %  15 9.1 %  37 18.8 %  10 7.9 %  
20  9 10.0 %  17 13.1 %  33 17.1 %  16 9.2 %  
30  12 12.6 %  25 18.7 %  40 19.7 %  27 18.8 %  

Table 4 
RUL prediction results on Group C and D.  

Cell no. Specifications Performance 

Material Charge/discharge rate MAE MAPE 

C3 LiCoO2 0.5/1C  23 17.1 % 
D3 Li(NMC)O2 1/1C  13 6.8 %  

Fig. 12. RUL prediction results on Group C and D.  
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and first-100-cycle battery data. Apart from this early-stage battery 
lifetime prediction, the proposed method can also make accurate RUL 
predictions at any ageing stage along the whole life trajectory of LIBs 
with only 10-cycle historical information. 

4.5. Ablation study: deeply learned features vs. handcrafted features 

In this section, we conduct an ablation study to examine two hy
potheses: 1) Will latent features learned from the proposed ATCMN beat 
the commonly used handcrafted features? 2) Will a combination of 
learned latent features and handcrafted features better serve the LIB RUL 
prediction task? Based on the proposed method, a new framework 
jointly considering learned latent features and handcrafted features is 
developed as shown in Fig. 13. 

As shown in Fig. 13, in this new framework, a LASSO model is 
applied to predict the battery RUL, which is a commonly used regular
ized model that could force many feature coefficients to become smaller 
or exactly zero through adding a l1-norm penalty on the loss function 
[36]. To examine the performance of two types of features, we set three 

experimental groups of model inputs: 1) learned latent features Z from 
the proposed ATCMN; 2) ten handcrafted features H inspired by [3], as 
listed in Table 7; 3) combination of two types of features Z + H. Ex
periments are conducted on Group A and B of Dataset I, and results are 
summarized in Table 8. 

Based on Table 8, answers for the two hypotheses can be obtained:  

1) Learned latent features outperform handcrafted features in this rapid 
battery RUL prediction task. When considering Z as the input, pre
diction errors of all test cells are lower than those of considering H as 
the input. Moreover, through analyzing the feature selection result of 
LASSO, we find that the selected features almost entirely belong to 
learned latent features, which implies the great value of learned 
latent features.  

2) The combination of learned latent features and handcrafted features 
cannot bring improvement to the prediction. For example, when 
both types of features are utilized, the MAE and MAPE of cell A5 are 
20 cycles and 14.1 %, respectively. Improvement cannot be obtained 
by comparing with results of using only Z as the input. This obser
vation is consistent for all test cells. 

5. Conclusions 

In this paper, a deep ATCMN framework was developed for the rapid 
RUL prediction of LIBs. The ATCMN realized accurate predictions via 
data of just 10 incomplete cycles obtained at any ageing stage of LIBs. To 
apply the ATCMN, the battery time, capacity, and temperature data 
collected during the incomplete discharge process were reorganized as a 
tensor structure to serve as the input of the ATCMN. Next, the ATCMN 

Table 5 
RUL prediction results of different deep learning frameworks.  

Model Group A Group B Group C Group D 

Cell A5 Cell B6 Cell C3 Cell D3 

MAE MAPE MAE MAPE MAE MAPE MAE MAPE 

ATCMN  4 7.4 %  11 7.7 %  23 17.1 %  13 6.8 % 
CNN + LSTM [24]  28 19.7 %  31 22.9 %  62 34.3 %  41 26.4 % 
Deep CNN [27]  12 11.6 %  18 13.4 %  38 21.3 %  26 18.9 % 
HPR CNN [28]  16 13.2 %  24 17.7 %  47 25.2 %  33 23.8 % 

Numbers with bold font represent best prediction results. 

Table 6 
Early-stage battery lifetime prediction results of different benchmarks.  

Benchmarks (early 
prediction position) 

Cell 
no. 

True 
lifetime 

Predicted 
lifetime 

AE 
(cycles) 

APE 
(%) 

1 feature + EN [2] 
(Cycle 100) 

A5  471  486  15 3.2 % 
A6  498  655  157 24.0 

% 
B5  1078  1256  178 14.2 

% 
B6  1028  1065  37 3.5 % 

18 features + EN [2] 
(Cycle 100) 

A5  471  480  9 1.9 % 
A6  498  605  107 17.7 

% 
B5  1078  1160  82 7.1 % 
B6  1028  1088  60 5.5 % 

4 features + GRNN  
[35] 
(Cycle 80) 

A5  471  510  39 7.6 % 
A6  498  673  175 26.0 

% 
B5  1078  1118  40 3.6 % 
B6  1028  992  36 3.6 % 

Proposed method 
(Cycle 10) 

A5  471  468  3 0.6 % 
A6  498  477  21 4.2 % 
B5  1078  1072  6 0.6 % 
B6  1028  1013  15 1.5 % 

Numbers with bold present best AE and APE attained. 

Fig. 13. Ablation study: RUL prediction framework integrating handcrafted features and learned latent features.  

Table 7 
Ablation study: handcrafted features.  

No. Feature description  

1 Average height of IC peak from cycle i − W + 1 to i  
2 Average voltage of IC peak from cycle i − W + 1 to i  
3 Average discharging time from cycle i − W + 1 to i  
4 Variance of ΔQi− (i− W+1)(V)  
5 Mean of ΔQi− (i− W+1)(V)  
6 Mean of minimum temperature from cycle i − W + 1 to i  
7 Mean of average temperature from cycle i − W + 1 to i  
8 Mean of maximum temperature from cycle i − W + 1 to i  
9 Internal resistance, difference between cycle i − W + 1 and i  
10 Average internal resistance from cycle i − W + 1 to i  
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composed of four network-based modules, the attention module, tem
poral convolution module, memory-augmented module, and prediction 
module, was sequentially conducted to engineer high-level spatial and 
temporal latent features as well as develop the mapping from latent 
features to the RUL. 

In computational studies, three datasets containing LIBs of different 
materials and tested with different conditions were utilized to study the 
accuracy and generalizability of the ATCMN on battery RUL predictions. 
Results indicated that 10-cycle was the optimal window size setting that 
simultaneously guaranteed the accuracy and efficiency of rapid battery 
RUL predictions. Results also demonstrated that the ATCMN could 
provide higher accuracy, faster and earlier prediction, as well as better 
generalizability than a set of state-of-the-art deep learning frameworks 
and early battery lifetime prediction methods. Finally, results of an 
ablation study indicated that features learned by the ATCMN brought 
higher value than commonly used handcrafted features in this task. 

The proposed framework offers a promising potential to accelerating 
the design optimization, online diagnosis, and recycling of LIBs. How
ever, there still exist a few limitations on this method, and we plan to 
further improve it from the following two directions.  

1) The proposed method could work well on different types of LIBs; yet, 
the model training is separately conducted for each type of LIBs. This 
is mainly limited by the inherent degradation discrepancy between 
different battery chemistries and different operation conditions, as 
well as the limited number of training batteries of different types. To 
tackle this issue, we plan to collect data of more types of battery 
degradation samples from both our laboratory experiments (experi
mental data) and our industrial partner (practical operational data). 
Based on sufficient training samples, we would like to explore more 
innovative deep learning model structures, such as the Vision 
Transformer-based deep model, to develop a more generalized RUL 
prediction framework which could realize the model training and 
accurate RUL prediction for different types of LIBs simultaneously.  

2) The proposed method is currently verified with data only collected at 
the laboratory setting. The method effectiveness still needs further 
evaluation based on real-world operational data. In the future, we 
plan to collaborate with our industrial partner to obtain more prac
tical battery data and further improve and verify the proposed 
method. 
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